Sentiment analysis is one of the hottest topics and research fields in machine learning and natural language processing (NLP). The possibility of understanding the meaning, mood, context and intent of what people write can offer businesses actionable insights into their current and future customers, as well as their competitors.
Constructing an enterprise-focused sentiment analysis system out of the best available frameworks means making some hard choices about the scope, scalability, architecture and ultimate intent of your project.
Because sentiment analysis is still an emerging field, no single solution or approach has won the market yet. The fastest available open-source NLP solution is not the most flexible; the most mature is not the easiest to implement or maintain; some of the most attractive of the other libraries have only a passing disposition toward sentiment analysis.
A better knowledge of the variety of available tools can help you frame the limitations and possibilities for your own future sentiment analysis projects—or at least to inform your strategy when picking partners in ML consulting. So, let’s assemble a map of the projects' various capabilities.