Face recognition has stopped being a subject of science fiction and safely transitioned to the real world, being one of the most popular applications of image analysis software today. Many people consider this to be a sinister technology, with various use cases in surveillance and intelligence gathering. The time when you can say “big brother is watching you” is here.
However, most of the actionable applications of facial recognition software are beyond the Orwellian dystopia that most people associate them with. Ironically, many of them are being developed to protect us from intruders. For example, access control is one of the most prevalent uses of facial recognition. If you’re unlocking your smartphone by just looking at it, then you understand the convenience of such a technology. Pretty soon you may even be able to withdraw cash from an ATM by simply allowing it to recognize you.
At the same time, there are far more practical applications that extend to other domains. For example, the Russian Rambler Group is using facial recognition algorithm to better target in-theater ads. Expedia also has been experimenting with facial recognition for a while now trying to identify travel locations that evoke the most positive emotions.
Whatever your potential application of facial recognition algorithm might be, it’s important to understand the complexity of the technology to make the right call. You don’t want to waste your resources on a concept that’s not going to create real value for you and your business.
In essence, the technology is made possible through a plethora of mathematical algorithms that break down the images into pixels/data points and try to make sense of this newly acquired data through various manipulations.
Of course, this is a hugely simplified explanation. Facial recognition algorithms are varied in robustness and applications. Each of them has their advantages and disadvantages, as well as a variety of data pre-processing steps. Facial recognition on your smartphone works differently from facial recognition in street cameras. Some algorithms work better with a small pool of images, while others require a wide variety to perform well.
Let's talk about some of the basics of how facial recognition works, what are some of the significant problems in facial recognition, how a facial recognition pipeline works, and what are some of the latest innovations in this domain.