Supply chain management (SCM) is an ideal sector for AI software development, since the supply chain processes are usually distinct and relatively easy to break down. At the same time, the growth of automated transit and logistics reporting technologies over the last thirty years1 provides a wealth of clean and classifiable data for machine learning systems.
SCM has proved to be a fruitful adoption sector for automated systems, with AI-enhanced supply chain management forecast to grow at a CAGR of 45.3% from the 2019 levels, reaching US$21.8 billion by 20272.
Areas where algorithms can improve logistics and management in the supply chain include:
- Risk assessment: identifying possible threats to an organization's business model and taking steps to mitigate them.
- Order fulfilment: ensuring adequate stock to meet demand over the course of a year, based on historic and seasonal demand patterns.
- Inventory management: the logging and monitoring of inbound materials, available stock and outbound orders.
- Fleet management: including the procurement and maintenance of delivery vehicles covering land, air and sea, as well as monitoring their disposition, availability and TCO.
- Procurement: balancing the logistics of inbound materials against delivery dates and fulfilment targets.
- Last mile delivery: the optimization of consignment strategies between fulfilment centers and final destination of the product.
- Capacity planning: the creation of flexible provisioning for peak stock levels while avoiding long-term over-commitment of storage capacity.
- Shopping cart diagnostics: using shopping cart behavior to inform after-market marketing, and analyzing new approaches to retention where stocking or consignment problems occur after a customer has placed an order.
- Demand forecasting: AI-enabled analytics helped food producer Danone to achieve a 20% drop in forecast error and 30% reduction in lost sales by adopting machine learning analysis for product demand3.
Let's take a look at perhaps the most obvious challenge for AI in the supply chain: creating the most economical and effective supply routes for delivery of goods.