AI can increase the appeal of insurance for a broader audience by utilizing real-time actionable data in place of lifeless, possibly erroneous statistics. Through applying these advanced ways of data collection, customer profiling capabilities significantly increase.
By utilizing facial recognition software, insurance companies can draw accurate insights about a person’s mass index, biological age, habits, life expectancy, and more. This is what made Lapetus Solutions appear in the headlines three years ago with their Chronos technology. The applicant uploads a selfie, answers nine questions, and receives a personalized life insurance policy without the need for a medical examination. For example, AI-based tool can accurately identify if an applicant is a smoker. Interestingly enough, this insurance software takes into consideration even the smallest details like crow’s feet around the eyes.
Equipped with the ability to source both internal and external customer data, insurers can now build a much more detailed picture of their customers. What are their real insurance needs and reasons for application? What are their interests and fears? By deriving these insights from vast data pools, insurers can segment their customers into clusters and recommend relevant product packages for each of them.
For example, US-based Layr, a commercial insurance platform for small businesses, uses machine learning to compare an insurance applicant to clusters of businesses in the same niche. The AI algorithm behind Layr platform automates the tasks of brokers and underwriters, which, in turn, allows business owners to find the best insurance for their needs.
As time goes by, the datasets become bigger, making these systems more precise and reliable. In the long term, AI in insurance will take on the role of a definitive efficacy factor.